If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-18a-32=0
a = 1; b = -18; c = -32;
Δ = b2-4ac
Δ = -182-4·1·(-32)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{113}}{2*1}=\frac{18-2\sqrt{113}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{113}}{2*1}=\frac{18+2\sqrt{113}}{2} $
| m+15=1210 | | b/10-12=8 | | 2/3m-11=51 | | 20x+200=15x+250 | | X+10=2x-12 | | -11=n/6 | | x^2−2x−35=0 | | .6666666666666667x-7=-3333333333333333x+12 | | (8+x)6=30 | | x2−2x−35=0 | | X+10=2x-32 | | 3k=-36 | | (4x+8)(8-4x)=0 | | 8-1(4n-10)=14 | | 18−4v=42 | | (25^10x)=5 | | (4x+8)(-4x)=0 | | 25^10x=5 | | -5m+25=5(1-4m)=5 | | 4n+4=58-5n | | -5/3x+1=-1/3x-3 | | 2w^2+8w+22=(w-1) | | 2x4+4=14 | | 66=-7y | | -6m-21=-171 | | -22x+7=-15 | | 36x^2-60x+25+16x^2-64=0 | | 4(9-p)=2(5-p) | | 15+p+p+p=51-p-p-p | | 6x+58=360 | | 17-3p=5p+1-16p | | 6x+2+56=360 |